next up previous contents
Next: Tagger Evaluation Up: Methodology: Statistics underlying the Previous: Corpus Statistics

Error Statistics

 

The error statistics are computed by comparing the tagger output with the manual tagging.

Example:

line word form manual tag tagger tag lex lexical tags
1 Ilka NE NE - ADJD ADV NE NN
2 Sperber NE + NN
3 war VAFIN VAFIN + VAFIN
4 schon ADV ADV + ADV VVIMP
5 bei APPR APPR + APPR PTKVZ
6 den ART ART + ART PDS PRELS
7 meisten PIDAT PIDAT + PIDAT PIS
8 Stars NN NN + NN
9 zu APPR APPR + ADV APPR PTKA PTKVZ PTKZU
10 Gast NN NN + NN VVFIN VVIMP
11 , $, $, + $,
2 die PRELS PRELS + ART PDS PRELS
13 in APPR APPR + APPR
14 Berlin NE NE + NE
15 wohnen VVFIN + VVFIN VVINF
16 . $. $. + $.

For the above sample test corpus we get the following numbers:

Number of tokens: 16
Number of tags: 11 { $, $. ADV APPR ART NE NN
PIDAT PRELS VAFIN VVFIN }
Lexicon gaps: 1 ``Ilka''
Lexical errors: 1 ``Sperber''
Ambiguity classes 13 {APPR}, {NE}, {NN}, {VAFIN}, {$,}, {$.},
{ADV VVIMP}, {APPR PTKVZ}, {PIDAT PIS},
{VVFIN VVINF}, {ART PDS PRELS},
{ADJD ADV NN NE}
{ADV APPR PTKA PTKVZ PTKZU}
Ambiguity rate: 2.06 (= 23/16)

The following table shows the error classification by ambiguity type for the above sample text.

ambiguity type number of tagger accuracy
tokens errors
1 tag 7 1 85.7 %
2 tags 4 1 75.0 %
3 tags 3 0 100.0 %
4 tags 1 0 100.0 %
5 tags 1 0 100.0 %
overall accuracy 16 2 87.5 %



next up previous contents
Next: Tagger Evaluation Up: Methodology: Statistics underlying the Previous: Corpus Statistics